PROTOCOL FOR GENOMIC DOUBLE STRANDED DNA AMPLIFICATION FOR RAPDs

- 1. Thaw all master mix components but Taq polymerase on ice. (See instructions for master mix preparation under Recipes section)
- 2. While master mix components are thawing, pipette 11 µl of autoclaved nanopure water into autoclaved, labeled PCR tubes on ice, and add 3 µl of template DNA.
- 3. Denature the DNA by placing the PCR tubes into the thermalcycler at 94° C for three minutes.
- 4. Immediately transfer the tubes into an ice/water slurry (speed is essential to keep the DNA from renaturing).
- 5. Add Taq polymerase to the master mix, vortex and centrifuge for 10 seconds.
- 6. Pipette 14 μl of master mix into each of the tubes containing the denatured DNA. Mix each tube and centrifuge for 10 seconds.
- 7. Overlay the solution with 2-3 drops of PCR mineral oil to avoid evaporation during amplification. (we use Sigma mineral oil for molecular biology)
- 8. Place the tubes in the thermalcycler for 45 cycles programmed as follows: 1 minute at 94° C, 1 minute at 36° C, and 2 minutes at 72° C to denature the DNA, anneal the primer, and extend the sequence, respectively.

RECIPES SECTION FOR DNA AMPLIFICATION

(All Solutions Must be Made with Autoclaved Nanopure Water)

A. dNTPs-100 mM each

Mix dNTPs in 1:19 ratios for final concentrations of 5mM.

We use Promega dNTPs. Aliquot into small amounts to avoid repeated freezing and thawing. Store at -20° C.

B. Primer- 0.5 OD units = $16.5 \mu g/ml$

Example, G12 with 15.5 μ g/tube dry and MW=2988 g is diluted in 0.9394 ml water for a final concentration of 5 μ m.

We use Operon 10-mer primer kits. Aliquot into small amounts to avoid repeated freezing and thawing. Store at -20° C.

C. Master Mix:			
component	storage temp.	volume/reaction	final concentration
10X Stoffel buffer	-20° C	$\overline{2.5 \mu}$	$\overline{2.5 \text{ mM Tris-HCL}}$,
			pH 8.3; 2.5 mM
			KCl
dATP (5 mM)	-20° C	1 µl	200 µM
dCTP (5 mM)	-20° C	1 µl	200 µM
dGTP (5mM)	-20° C	1 µl	200 µM
dTTP (5mM)	-20° C	1 µl	200 µM

Primer (5 µM)	-20° C	4 μl	0.8 μM
MgCl ₂ (25 mM)	-20° C	3.5 μl	3.5 mM
 4. Stoffel Fragment Mix: <u>component</u> Stoffel Fragment (10 units/ μl) 	<u>storage</u> t <u>emp</u> . -20° C	<u>volume/reaction</u> 0.2 μl	final concentration 2 units/ 25 μl

We use Perkin Elmer Amplitaq DNA Polymerase, Stoffel Fragment with 10X Stoffel Buffer and 25 mM MgCl₂ Solution. Stoffel Fragment Taq Polymerase is more expensive than other Taq Polymerase, so it may be beneficial to find the right Taq to fit your own needs and budgets.