In our discussion of chemical kinetics we described two alternative reaction profiles that are typical of nucleophilic aliphatic substitution reactions. They are reiterated in Figure 1. The profile in the left-hand panel is typical of nucleophilic aliphatic substitution reactions that proceed by a concerted, 1-step process, i.e. by an Sn2 mechansim. We are now going to look at a group of nucleophilic aliphatic substitution reactions that proceed by a non-concerted, 2-step process.
If you think of the Sn2 mechanism as the Dr. Jekyl of nucleophilic aliphatic substitution reactions, then the Sn1 mechanism is certainly the Mr. Hyde- a very different character. We will take a brief look at the differences for each of the parameters we considered during our discussion of the Sn2 mechanism.
When an aqueous solution of potassium hydroxide, KOH, is added to a solution of 2-chloro-2-methylpropane in ethanol, the 2-chloro-2-methylpropane is converted into 2-methyl-2-propanol as outlined in Equation 1.
Exercise 3 Select the best interpretation of the observation that the rate of reaction 1 does not depend on the amount of hydroxide ion added to the solution. You are measuring the rate of a reaction that produces a different product. Autoionization of water keeps the concentration of hydroxide ion constant. The hydroxide ion is not involved in the rate determining step of the reaction. Water ionizes to produce hydroxide ion in ethanol.
Exercise 4 When no KOH was added to the mixture, the solution slowly became acidic. Furthermore, the conductance of the solution increased with time. Write an equation that is consistent with this information.
As the data make clear, the rate of substitution does not change significantly when the nucleophile is changed, i.e. unlike an Sn2 reaction, where the rate of substitution is affected by the reactivity of the nucleophile, the rate of this reaction is independent of the nucleophile.
Exercise 6 Select the correct order of base strengths of the ions in Scheme 1: hydroxide > carbonate > iodide hydroxide > iodide > carbonate carbonate > hydroxide > iodide carbonate > iodide > hydroxide
Exercise 7 Based on your experience with Sn2 reactions, select the correct order of nucleophilic reactivity of the ions in Scheme 1: hydroxide > carbonate > iodide hydroxide > iodide > carbonate iodide > carbonate > hydroxide carbonate > iodide > hydroxide
This postulate accounts for the observation that the conductance of the solution increases with time.
The cation that is produced is called a carbocation to indicate that the carbon atom bears a formal positive charge. Note that this carbocation violates the octet rule; there are only six electrons in the valence shell of the carbon atom that bears the positive charge. It should not be a surprise then that this ion reacts with nucleophilic species very rapidly. If hydroxide ion is the nucleophile, the second step of the 2-step process looks like
In the absence of hydroxide ion, water assumes the role of the nucleophile
The intermediate oxonium ion loses a proton during the work-up of the reaction to produce the final product, 2-methyl-2-propanol.
Figure 2 identifies these species in a reaction coordinate diagram like the one in the right-hand panel of Figure 1. Here the nucleophile is hydroxide ion.
As the figure indicates, the activation energy for the first step of the reaction is much larger than that for the second step. Thus the first step is much slower. It is called the rate determining step. The rate determining step leads to the formation of the intemediate carbocation which then reacts rapidly with the nucleophile in the product determining step. Note that there are two transition states involved in this mechanism. In the first, the bond between the leaving group and the reaction center is partially broken; the carbon is acquiring a positive charge while the chlorine is becoming negative. In the second transition state the bond between the nucleophile and the reaction center is partially formed; the charge on the carbon atom is diminishing from +1 towards 0, while the charge on the hydroxide ion is changing from -1 towards 0.
Exercise 9 Select the statement that most accurately describes why (CH3)3CS+(CH3)2 reacts with hydroxide ion, carbonate ion, and iodide ion at the same rate (See Scheme 2.). These ions are equally reactive as nucleophiles. The activation energies for the three product determining steps are the same.The rates of the product determining steps are different, but you can't measure the differences.
Exercise 10 Which nucleophile has the lowest activation energy for the product determining step of the reaction outlined in Scheme 1? iodide ion carbonate ion hydroxide ion
We'll consider one set of data to illustrate how steric factors influence the rate of nucleophilic aliphatic substitution that display unimolecular kinetics. The relevant reactions are summarized in Scheme 2
Exercise 12 Which type of substrate reacts under the conditions described in Scheme 2? methyl 1o 2o 3o
Exercise 13 If the solvent for the reaction shown in Scheme 2 were acetone rather than formic acid, which substrate would react fastest? Which type of substrate reacts under the conditions described in Scheme 2? methyl 1o 2o 3o
Other examples of ionizing, non-nucleophilic solvents are acetic acid (CH3CO2H), trifluoroacetic acid (CF3CO2H), trifluoroethanol (CF3CH2OH), and hexafluoroisopropanol (CF3)2CHOH).
In our discussion of the Sn2 mechanism we considered a scheme for analysing the effect of changing solvents on the relative rates of bimolecular substitution reactions. That scheme required an understanding of the charge type of each reaction. The same analysis is applicable to Sn1 reactions. Consider the data in Table 1 which summarizes the change in rate of the hydrolysis of 2-chloro-2-methylpropane as the polarity of the solvent is increased by increasing the percentage of water .
Exercise 16 Predict the effect of increasing the solvent polarity on the rate of the reaction shown in Scheme 1. It should increase the rate. It should decrease the rate.
When 2-bromooctane is refluxed in 60% water and 40% ethanol, it is converted into a mixture of 2-octanol and 2-ethoxyoctane as shown in Equation 2.
Performing this reaction with enantiomerically pure starting material provides insight into the stereochemical nature of the process. The specific rotation of (R)-2-bromooctane is -34.6 degrees. The specific rotation of (R)-2-octanol is -9.9 degrees. When reaction 2 was run using (R)-2-bromooctane, the optical rotation of the 2-octanol that was isolated was +6.5 degrees. If the reaction proceeded with complete inversion of configuration, i.e. by an Sn2 mechanism, the specific rotation of the 2-ocatnol produced should be +9.9 degrees. The fact that it is only +6.5 degrees must mean that the sample contains some of the levorotatory isomer in addition to the dextrorotatroy product. Calculating the composition of the mixture from the optical rotation is easy: +6.5 = [(X)*(+9.9) + (1-X)*(-9.9)], where X is the mole fraction of the S enantiomer and 1-X the mole fraction of the R enantiomer in the product. Doing the math shows that 83% of the 2-octanol had the S configuration while 17 % was the R enantiomer. In other words, the stereochemical configuration at the reaction center was inverted 83% of the time while being retained 17% of the time.
The specific rotation of (R)-1-phenylethanol is +42 degrees. The rotation of the sample of 1-phenylethanol produced from optically pure (S)-1-chlorophenylethane was +7.1 degrees. Clearly this sample must contain a lot of (S)-1-phenylethanol, i.e. a lot of the stereoisomer with the same configuration as the starting material.
Clearly the stereochemical nature of the Sn1 mechanism is more complex than that of the Sn2 process. Figure 3 summarizes the possibilities. Equation 2 exemplifies a reaction that proceeds with 83% inversion of configuration and 17% retention. In reaction 3 the 58/42 distribution of enantiomers is much closer to the 50/50 ratio in a racemic mixture. Finally, as the results of reaction 4 demonstrate, even complete retention of configuration is possible.
How do we interpret such variable behavior? In Figure 2 we postulated a 2-step process in which the leaving group departs from the substrate to produce an intermediate carbocation. Figure 4 offers a more detailed picture of the carbocationic intermediates involved in each of the processes outlined in Figure 3.
The suggestion for reaction 2 is that the leaving group blocks access to the front side of the molecule, forcing the nucleophile to approach the substrate from the back side, leading to predominant inversion of configuration. When the alkyl group is changed to a phenyl ring, as in reaction 3, the carbocation is stable enough that the leaving group completely separates from the substrate; a symmetrical intermediate is formed and the product is racemic or nearly so. In reaction 4, the carboxylate anion is thought to act like an internal nucleophile, assisting the departure of the leaving group by coordinating to the back side of the C-Br bond and blocking access of the nucleophile to that side of the molecule.
Exercise 20 Draw pictures of the 1st and 2nd transition states involved in reactions 2, 3, and 4. Use dashed lines to show bonds that are partially formed or broken. Use d+/ d- symbols to depict partial charges.